UNIT 8: ANALYTIC GEOMETRY

Exercise 1: Plot

a) Plot the vectors $\vec{u} = (-3,1)$, $\vec{v} = (-5,-7)$, $\vec{w} = (\sqrt{2},-\sqrt{3})$, $\vec{i} = (1,0)$, $\vec{j} = (0,-2)$

b) Plot the vector $\overline{w} = (1,5)$ with initial point A(3,1)

Exercise 2: Given the points A(2,-3), B(5,4) and C(-1,-5) find the coordinates of the vectors \overline{AB} , \overline{AC} and \overline{BC}

Exercise 3: If $\overrightarrow{PQ} = (7,1)$ and P(2,-1), find the coordinates of the point Q

Exercise 4: The terminal point of a certain vector $\overrightarrow{w} = (5, -1)$ is S(7, -3). Find its initial point.

Exercise 5: Find the length of the vectors $\vec{u} = (3, -4)$, $\vec{v} = (-2, -9)$ and $\vec{w} = (1, \sqrt{2})$

Exercise 6: Find the length of the vectors $\vec{u} = \left(\frac{1}{3}, -\frac{2}{5}\right)$, $\vec{v} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\vec{w} = (1 + \sqrt{3}, \sqrt{5})$

Exercise 7: Given the vectors $\vec{u} = (-1,1)$, $\vec{v} = (3,-4)$ and $\vec{w} = (-1,-8)$ work out:

- a) $\vec{u} + \vec{v} =$
- b) $\vec{u} \vec{w} =$
- c) $\vec{u} \vec{v} + \vec{w} =$
- d) $3\vec{u} 5\vec{v} =$

Exercise 8: Given the vectors $\vec{u} = (4, -7)$, $\vec{v} = (-2, 1)$ and $\vec{w} = (16, -23)$, express \vec{w} as a linear combination of \vec{u} and \vec{v}

Exercise 9: Given the vectors $\vec{u} = (4,2)$, $\vec{v} = (-6,3)$ and $\vec{w} = (2,0)$, check if \vec{w} can be expressed as a linear combination of \vec{u} and \vec{v}

Exercise 10: Write $\overrightarrow{w} = (4, -2)$ as a linear combination of $\overrightarrow{u} = (-1, 3)$ and $\overrightarrow{v} = (5, -2)$

Exercise 11: Find the dot product of the vectors $\vec{u} = (-3, -1)$ and $\vec{v} = (4, -5)$

Exercise 12: Find two vectors that are perpendicular to $\vec{u} = (1, -3)$

Exercise 13: Given the vectors $\vec{u} = (3, -7)$, $\vec{v} = (2, -6)$ and $\vec{w} = (7, 3)$

- a) Are \vec{u} and \vec{v} perpendicular vectors?
- b) Are $\overset{\rightharpoonup}{u}$ and $\overset{\rightharpoonup}{w}$ orthogonal vectors?
- c) Express $\,v\,$ as a linear combination of $\,u\,$ and $\,w\,$

Exercise 14: Find the value of k so that the vectors $\vec{u} = (k-2,7)$ and $\vec{v} = (k+2,2k+7)$ are orthogonal

Exercise 15: Find the value of k so that the points A(2, k+1), B(k, 5) and C(1, 1) form a right-angled triangle.

Exercise 16: Prove that the triangle formed by the points A(3,5), B(10,0) and C(4,-1) is isosceles

Exercise 17: Find the value of k so that the triangle formed by the points A(k,5), B(3k,6) and C(k-1,k+8) is isosceles

Exercise 18: If $\vec{u} = (2, -1)$ and $\vec{v} = (3, 5)$ find a third vector \vec{w} so that $\vec{w} \cdot \vec{u} = 1$ and $\vec{w} \perp \vec{v}$

Exercise 19: Given the vectors $\vec{u} = (3, 2)$, $\vec{v} = (\sqrt{3}, \sqrt{2})$, $\vec{w} = (4, -6)$ and $\vec{z} = (5, -1)$

- a) Find the magnitude (length) of the vector \vec{v}
- b) Express w as a linear combination of u and z
- c) Are u and z perpendicular vectors?
- d) Indicate the coordinates of the vector $\vec{u} + 3\vec{w} 2\vec{z}$

Exercise 20: Given the points A(-1,4) and B(3,-1)

- a) Find the direction vector of the line that goes through A and B
- b) Find the vector equation of the line AB
- c) Find the parametric equations of AB
- d) Write the continuous and general equations

Exercise 21: Given the straight line $r = \begin{cases} x = 1 - 3t \\ y = -2 + 5t \end{cases}$ find the direction vector and a point of the line

Exercise 22: Find the parametric and continuous equations of the straight line 5x - y + 1 = 0

Exercise 23: Find the value of k so that the point R(k,-2) belongs to the straight line

$$r \equiv \begin{cases} x = 2 - 3t \\ y = -1 + 4t \end{cases}$$

Exercise 24: Given the points A(1,-5) and B(-2,7) find the continuous and general equations of the straight line that goes through them

Exercise 25: Given the straight line

$$r \equiv \begin{cases} x = 2 + 5t \\ y = t - 4 \end{cases}$$

- a) Find a point Q that belongs to r
- b) Decide if the point $P(4,-3) \in r$
- c) Find the value ok k so that $A(k+1,7) \in r$

Exercise 26: Given the straight line $\frac{x+1}{5} = \frac{4-y}{2}$

- a) Find a point on the line
- b) Find the direction vector
- c) Write the parametric equations

Exercise 27: Find the vector, continuous and parametric equations of the straight line 7x + 4y - 9 = 0

Exercise 28: One line passes through the points A(-1,-2) and B(1,2); another line passes through the points P(-2,0) and Q(0,4). Are these lines parallel, perpendicular, or neither?

Exercise 29: One line passes through the points A(0,-4) and B(-1,-7); another line passes through the points P(3,0) and Q(-3,2). Are these lines parallel, perpendicular, or neither?

Exercise 30: Given the straight line 3x + 2y - 5 = 0

- a) Find the equation of a parallel line that goes through A(-2,4)
- b) Find the equation of a perpendicular line that goes through B(3,-5)

Exercise 31: Given the straight line $r = \begin{cases} x = -1 + 2t \\ y = 5 - t \end{cases}$ find the general equations of:

- a) A straight line parallel to r going through Q(-2,3)
- b) A line perpendicular to r going through R(-5,-1)

Exercise 32: Find the equations of two straight lines s_1 and s_2 so they both go through the point A(5,-1), $s_1 \parallel r$, $s_2 \perp r$, where $r \equiv x + 2y - 7 = 0$

Exercise 33: Given the straight line

$$r \equiv \begin{cases} 4 + 3t \\ 2t - 1 \end{cases}$$

- a) Find the general equation of a parallel line r' that passes through the point A(-2,5)
- b) Find the general equation a perpendicular line r" that passes through the point B(-4,1)
- c) Find the point where r and r" cross

Exercise 34: Find the points that divide the segment \overline{AB} in four equal parts, where A(-6,5) and B(8,-1)

Exercise 35: Given the points P(1, k+3), Q(k-6, 2) and R(-k, -2k)

- a) Find the value of k so that they are aligned
- b) Find the value of k (another) so that the triangle PQR is isosceles

Exercise 36: Find the coordinates of the symmetric point of A(2,-5) with respect to Q(-2,9)

Exercise 37: Find the value of k so that d(P,Q) = d(P,R), where P(7,-2k), Q(-k,k+3), R(6-2k,-1)

Exercise 38:

- a) Determine if the points A(3,6), B(-3,2) and C(0,4) are aligned. If the answer is yes, find the continuous equation of the straight line they belong to.
- b) Work out the coordinates of the symmetric point of P(3,1) with respect to Q(-3,7)
- c) Find the value of k so that the point R(k,-2) belongs to the straight line

$$r \equiv \begin{cases} 2 - 3t \\ -1 + 4t \end{cases}$$

Exercise 39: The points A(1,1), B(5,4) and C(5,-1) are the vertices of a triangle

- a) Find the altitude of the triangle if the base is \overline{AC}
- b) Find its perimeter and its area

Exercise 40: Find the value of k so that u = (-2, k) is parallel to v = (1 - k, 3)

Exercise 41: Find the value of k so that u = (k-2, -7) is orthogonal to v = (k+2, 2k-7)

Exercise 42: Find the value of k so that $r \perp s$, where r = kx + 2y - 3 = 0, s = 5x - ky + 1 = 0

Exercise 43: Find the value of k so that the triangle A(5,3), B(k+1,4) and C(2k,5)

- a) Has a right angle in A
- b) Is isosceles