
FUNCTIONS - 4º ESO

Exercise 1: (1.25 points) Given the graph of the following function

- a) Study the domain and the image of the function
- b) Study its monotony
- c) Indicate the relative and absolute extrema

Exercise 2: (0.5 points) Work out the equation of the straight line that passes through the points P(5,-2) and Q(7,4)

Exercise 3: (1.5 points) Calculate the value of the following logarithms

a)
$$\log_2 0.0625 =$$

b)
$$\log_7 343 =$$

c)
$$\frac{\log_5 9}{\log_5 81} =$$

d)
$$\frac{\log 20 + \log 50}{\log 80 - \log 8} =$$

Exercise 4: (1.5 points) Find the domain of the functions:

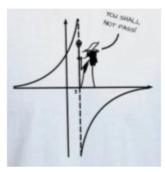
a)
$$f(x) = \sqrt{x^2 + 4x + 3}$$

b)
$$g(x) = \frac{\sqrt[3]{x^2 - 16}}{x^2 - 9}$$

c)
$$h(x) = \frac{\sqrt{x+2}}{x^2 - 6x + 9}$$

Exercise 5: (1.5 points) Work out the value of these limits

a)
$$\lim_{x \to 1} \frac{x^2 - 3}{x^2 + x - 2} =$$


b)
$$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x^2 - 9} =$$

c)
$$\lim_{x \to +\infty} \left(x - \frac{x^2 + 3}{x - 1} \right) =$$

Exercise 6: (0.75 points) Find the asymptotes of the following functions:

a)
$$f(x) = \frac{5x^2 - 3x}{x^2 - 1}$$

Exercise 7: (1 point) Plot the graph of the parabola $f(x) = x^2 + 4x + 3$, finding the points where it crosses the axes and the coordinates of the vertex.

Exercise 8: (2 points) Sketch the graph the piecewise function given below:

$$f(x) = \begin{cases} x+3 & x < -1 \\ 2^x & -1 \le x < 3 \\ \frac{8}{x-2} & 3 \le x < 10 \end{cases}$$

With a different color or a dotted line, and over the same set of axes, draw the graph of |f(x)|