Exercise 1: (1.25 points) Find the value of the unknowns:

Exercise 2: (1 point) Find the values of the indeterminates in the following figure without using Pythagoras' theorem

Exercise 3: (1.25 points) Find the area of a heptagonal pyramid with altitude of length 12 cm if the side of the base measures 14 cm and the edge has a length of 16 cm

Exercise 4: (1 point)

- a) Turn into radians 105° and 300°
- b) Turn into degrees $\frac{2\pi}{3}$ and $\frac{5\pi}{4}$

Exercise 5: (1 point) Given the vectors $\vec{u} = (-3, 7)$, $\vec{v} = (2, -1)$ and $\vec{w} = (-21, 38)$

- a) Find the length of the vector \vec{u}
- b) Express \overrightarrow{w} as a linear combination of \overrightarrow{u} and \overrightarrow{v}
- c) Are \vec{u} and \vec{v} perpendicular vectors?

Exercise 6: (1 point)

- a) If $\vec{u} = (2, -3)$ and $\vec{v} = (4, 1)$ find a third vector \vec{w} so that $\vec{w} \cdot \vec{v} = 2$ and $\vec{w} \perp \vec{u}$
- b) Indicate a direction vector and a point of the straight line 7x + 2y 9 = 0

Exercise 7: (1 point) Given the straight line
$$r = \frac{x-2}{3} = \frac{y+7}{2}$$

- a) Find the general equation of a parallel line r' that goes through the point P(1,-4)
- b) Find the general equation a perpendicular line r'' that goes through the point Q(5,-2)

Exercise 8: (1.25 points)

- a) Work out the coordinates of the symmetric point of A(-3,7) with respect to Q(-1,-2)
- b) Find the parametric and continuous equations of the straight line 2x 5y + 10 = 0

Exercise 9: (1.25 points) Find the value of k so that the triangle A(k+2,5), B(6,4) and C(2k+1,6) is isosceles