

ANALYTIC GEOMETRY AND TRIGONOMETRY 4° ESO

Exercise 1: (2 ptos)

- a) Find the symmetric of the point A(1,2) with respect to the point P(5,-1)
- b) Given the vectors $\vec{u}=(2,3)$, $\vec{v}=(-1,4)$ and $\vec{w}=(7,5)$ write \vec{w} as a linear combination of \vec{u} and \vec{v}

Exercise 2: (2.25 ptos)

- a) Given the points P(k+4,3), Q(7,k+3) and R(6k,1) find the value of k so that the triangle that they form is isosceles in P (1.5)
- b) Find the value of m so that the triangle formed by the points A(2,3), B(7,4m) and C(m+2,-2) has a right angle in A (0.75)

Exercise 3: (0.75 ptos) Given the straight line $r = \begin{cases} x = 2 + 5t \\ y = 1 + 2t \end{cases}$ find the general equation of:

- a) A parallel line r' going through the point A(4,-3)
- b) A perpendicular line r going through the point B(5,-1)

Exercise 4: (1 pto) Find the parametric and continuous equations of the straight line given by r = 2x + 7y - 9 = 0

Exercise 5: (1 pto) Given the vectors $\vec{u} = (2,3)$ and $\vec{v} = (-1,4)$ find a third vector \vec{w} so that $\vec{u} \perp \vec{w}$ and $\vec{v} \cdot \vec{w} = 33$

Exercise 6: (1 pto) Find the general equation of the straight line that goes through the points A(3,-5) and B(2,1)

Exercise 7: (1 pto) If $\cos \alpha = 0.57$ and $\frac{3\pi}{2} < \alpha < 2\pi$ find the values of $\sin \alpha$, $\tan \alpha$ and α

Exercise 8: (1 pto)

- a) Turn $\frac{13\pi}{12}$ and $\frac{13\pi}{9}$ into degrees
- b) Turn 75° and 210° into radians

