UNIT 1: REAL NUMBERS, POWERS AND ROOTS

Exercise 1: Classify the following numbers:

a)
$$\pi$$
; 7/5; 0.477777...; $-\sqrt{9}$; -2; $\sqrt{3}$; $\sqrt{-25}$; 14/7; $\sqrt[3]{-8}$

b)
$$\sqrt{-4}$$
; $7.\overline{2}$; $-\sqrt{16}$; $20/7$; -5 ; $\sqrt{2}$; $21/3$; $-\sqrt[3]{-27}$; ϕ

Exercise 2: Decide if the following affirmations are true or false and why

- a) All rational numbers are integer numbers.
- b) Irrational numbers are not real numbers.
- c) The product of two rational numbers can never be a natural number.
- d) The sum of two irrational numbers is always an irrational number.

Exercise 3: Decide if the following affirmations are true or false and why

- a) The quotient of two rational numbers can never be a natural number.
- b) Rational numbers are natural numbers.
- c) Any power of an irrational number is always an irrational number.
- d) Some numbers are neither rational nor irrational numbers.

Exercise 4: Represent $\sqrt{34}$ on the number line using just a compass and a ruler

Exercise 5: Represent $\sqrt{41}$ on the number line using just a compass and a ruler

Exercise 6: Susan uses the intercept theorem to measure the church tower and gets a result of 19.8m. Then she takes a look at the church records and finds out that the real height is of 20.1m. find the percentage error between both measures.

Exercise 7: A racing car is said to reach a speed of 320 km/h, but when tested several times on a track, it only reached 307.6 km/h. Find the percentage error between the car specifications and the real value.

Exercise 8: A realtor bought a house for a price of 135000€ and sold it for 150000€, while a second realtor bought a house for 225000€ and sold it for 240000€. If the real state agency has a policy saying that the benefit must be, at least, 10% of the purchase price, which realtor is going to be fired?

Exercise 9: Find the absolute and relative errors when we approximate ϕ by $\frac{987}{610}$

Exercise 10: Round and chop the number $e \approx 2.7182818285$ to five significant figures and estimate both the absolute and relative errors. Which approximation is better? Why?

Exercise 11: A few years ago I went to the butcher's shop to get some croquettes and skewer meat and the bill added up to a total of 6.67€. The butcher asked me to pay 6.70€. Find the percentage of money that I was cheated. Do you think the approximation is appropriate?

Exercise 12: Write the following intervals as inequalities and represent them on the number line:

b)
$$(-2,6]$$

c)
$$(-9, -2)$$

f)
$$(-\infty, +\infty)$$

Exercise 13: Write the following inequalities in interval notation and then represent them on the number line.

a)
$$4 \le x < 9$$

b)
$$-3 < x \le 4$$

c)
$$-3 \le x$$

d)
$$-2 < x < -7$$

e)
$$x < 5$$

f)
$$0 \le x \le 1$$

Exercise 14: Write as an interval:

a)
$$(-7,3) \cup [-3,1]$$

a)
$$(-7,3) \cup [-3,1]$$
 b) $(-7,-2) \cup [-2,3]$ c) $[-5,2) \cap (0,3]$

c)
$$[-5,2) \cap (0,3]$$

d)
$$(-9, -3) \cup (-3, 1]$$
 e) $[-3, 1] \cap [1, 4]$

f)
$$[-4,5) \cap (0,3]$$

Exercise 15: Study these unions and intersections of intervals:

a)
$$(-3,1) \cap (0,4)$$

c) (1,5]
$$\cup$$
 [5,9]

Exercise 16: Write the following numbers using scientific notation:

c)
$$853.794 \cdot 10^{-5} =$$

d)
$$0.0032864 \cdot 10^7 =$$

e)
$$42835.729 \cdot 10^4 =$$

g)
$$0.00016234 \cdot 10^{-7} =$$

h)
$$345.7865 \cdot 10^4 =$$

Exercise 17: Write the following numbers using scientific notation:

- a) Jupiter's mass: 1898 200 000 000 000 000 000 000 kg
- b) The radius of an atom of hydrogen: 0.00000000052917721 m
- c) The mass of a dust particle 0.000000000753 kg
- d) The distance between the Sun and Pluto 5906380000 km

Exercise 18: The Atlantic Ocean expands at a speed of $6.34 \cdot 10^{-10}$ m/s. How much does the distance between Europe and America grow in a year?

Exercise 19: The New Horizons probe can reach a speed of 58536 km/h. How long would it take it to cover the distance between the Earth and Jupiter, which is estimated in 5.88·1011 m?

Exercise 20: Work out:

a)
$$5.12 \cdot 10^2 - 4.37 \cdot 10^5 - 1.83 \cdot 10^7 =$$

b)
$$-3.51 \cdot 10^{-2} + 7.92 \cdot 10^{-3} - 5.84 \cdot 10^{-6} =$$

c)
$$2.51 \cdot 10^4 - 7.43 \cdot 10^5 - 8.31 \cdot 10^7 =$$

d)
$$5.84 \cdot 10^{-5} - 5.13 \cdot 10^{-3} + 7.9 \cdot 10^{-6} =$$

Exercise 21: Work out:

a)
$$(7.35 \cdot 10^4) \cdot (7.15 \cdot 10^{-5}) =$$

b)
$$(4.12 \cdot 10^{-9}) \cdot (7.35 \cdot 10^{4}) =$$

c)
$$(4.48 \cdot 10^3)$$
: $(9.05 \cdot 10^{-8})$ =

d)
$$(3.72 \cdot 10^{-9}) : (9.4 \cdot 10^{-2}) =$$

e)
$$2.39 \cdot 10^5 - 5.64 \cdot 10^2 : 7.15 \cdot 10^{-2} =$$

f)
$$4.12 \cdot 10^{-3} + 8.29 \cdot 10^{5} \cdot 7.34 \cdot 10^{-7} =$$

Exercise 22: Work out the value of the following roots:

a)
$$\sqrt{151200} =$$

d)
$$\sqrt[12]{\frac{x^{20}y^{36}z^4}{w^{30}}} =$$
 e) $\sqrt{\frac{7^4}{5^3}} =$

e)
$$\sqrt{\frac{7^4}{5^3}} =$$

f)
$$\sqrt[7]{\frac{2^{14} \cdot 3^{21} \cdot 7^{35}}{5^4 \cdot 11^{48}}} =$$

h)
$$\sqrt[5]{\frac{a^{-10} \cdot b^{25}}{c^{17}}} =$$

i)
$$\sqrt[7]{\frac{x^{16} \cdot y^{-39} \cdot z^{-12}}{w^7}} =$$

Exercise 23: Work out:

a)
$$\sqrt{300} - 5\sqrt{27} + 7\sqrt{48} =$$

b)
$$2\sqrt{32} - 4\sqrt{243} + 5\sqrt{243} + \sqrt{75} =$$

c)
$$3\sqrt{108} - 9\sqrt{128} - \sqrt{75} + \sqrt{2} =$$

d)
$$\sqrt{891} - 2\sqrt{1323} + 7\sqrt{2187} - \sqrt{275} + 5\sqrt{300} =$$

e)
$$5\sqrt{162} - 2\sqrt{175} + 5\sqrt{128} - \sqrt{343} =$$

Exercise 24: Work out:

b)
$$\frac{\sqrt[4]{3^5 \cdot 5^7} \cdot \sqrt[3]{3^2 \cdot 5}}{\sqrt{3 \cdot 5^3}} =$$

c)
$$\frac{\sqrt{2^4 \cdot 5^3} \cdot \sqrt[5]{2 \cdot 3^7}}{\sqrt[3]{2^4 \cdot 5}} =$$

d)
$$\frac{\sqrt{2^{-5} \cdot 5^7} \cdot \sqrt[3]{7^2}}{\sqrt[5]{2^{-4} \cdot 7^6}} =$$

e)
$$\frac{\sqrt[6]{2^5 \cdot 7^{-3}} \cdot \sqrt[5]{7^{-4} \cdot 5^3}}{\sqrt{2 \cdot 5^{-2}}} =$$

f)
$$\frac{\sqrt[5]{3^2 \cdot 5^3 \cdot \sqrt[4]{7^{-3} \cdot 3^5}}}{\sqrt{5^4 \cdot 3^{15}}} =$$

Exercise 25: Express as a radical:

a)
$$5^{2/3} =$$

b)
$$7^{5/2} =$$

c)
$$3^{-2/5} =$$

d)
$$x^{-4/7} =$$

e)
$$y^{11/6} =$$

f)
$$a^{-5/3} =$$

Exercise 26: Work out (you can either work with the radicals or transform them into rational exponents)

a)
$$\sqrt{\sqrt{a^{10}}} =$$

b)
$$\left(\sqrt[7]{a^3}\right)^5 =$$

c)
$$\sqrt[3]{\sqrt[4]{y^{12}}} =$$

d)
$$\left(\sqrt[6]{\sqrt{a^{-5}}}\right)^8 =$$

$$e)\left(\sqrt{\sqrt[4]{x^3y^5}}\right)^{10} =$$

e)
$$\left(\left(\left(\sqrt{\sqrt[6]{a^2b^{-3}}}\right)\right)\right)^8 =$$

Exercise 27: Work out and express as a single radical:

a)
$$\sqrt{a}$$
: $\sqrt[5]{a}$ =

b)
$$\sqrt{x^3} \cdot \sqrt[3]{x^{-4}} \cdot \sqrt[4]{x^{-5}} =$$

c)
$$\sqrt{a^3} \cdot \sqrt[3]{a^4} \cdot \sqrt[4]{a^5} : \sqrt[5]{a^6} =$$

d)
$$(\sqrt[15]{a^2} : \sqrt{a^{-3}}) : \sqrt[4]{a^7} =$$

e)
$$\frac{\sqrt[3]{x^5} \cdot \sqrt{x^{-7}}}{\sqrt[5]{x^{-8}}} =$$

f)
$$\frac{\sqrt[5]{y^2} \cdot \sqrt{y^{-7}}}{\sqrt[3]{y^{-4}} \cdot \sqrt[10]{y^3}} =$$

Exercise 28: Work out and express as a radical:

a)
$$7^{-3/5} \cdot 7^{2/3} \cdot 7^{1/4} \cdot 7^{-3/2} =$$

b)
$$a \cdot a^{7/3} \cdot a^{-2/5} \cdot a^{-1/2} =$$

c)
$$x^{-2/5} \cdot x^{6/7} \cdot x^{1/10} \cdot x^{2/3} \cdot x^2 =$$

d)
$$3^{2/5} \cdot 3^{3/2} \cdot 3^{5/6} \cdot 3^{1/10} =$$

e)
$$y^{7/5} \cdot y^{2/3} \cdot y^{-5/4} \cdot y^{-3/5} =$$

Exercise 29: Rationalize and simplify if possible:

a)
$$\frac{5}{\sqrt{5}} =$$

b)
$$\frac{7\sqrt{3}}{\sqrt{7}} =$$

c)
$$\frac{5}{\sqrt{10}}$$
 =

d)
$$\frac{7}{\sqrt{14}} =$$

e)
$$\frac{1}{\sqrt[3]{5^2}}$$
 =

f)
$$\frac{6}{\sqrt[4]{3}}$$
 =

g)
$$\frac{10\sqrt[3]{2}}{\sqrt[3]{2^3}} =$$

h)
$$\frac{21}{\sqrt[5]{7^4}} =$$

Exercise 30: Rationalize and simplify if possible:

a)
$$\frac{7}{4-\sqrt{3}} =$$

c)
$$\frac{3}{4+\sqrt{7}} =$$

e)
$$\frac{15}{\sqrt{7}-\sqrt{2}}$$
 =

b)
$$\frac{5}{\sqrt{3} + \sqrt{2}} =$$

d)
$$\frac{2\sqrt{7}}{\sqrt{5}-\sqrt{3}} =$$

f)
$$\frac{14}{3-\sqrt{2}} =$$

Exercise 31: Rationalize and simplify if possible:

a)
$$\frac{\sqrt{3}+1}{\sqrt{3}-1} =$$

c)
$$\frac{\sqrt{5} - \sqrt{3}}{\sqrt{3} + \sqrt{2}} =$$

e)
$$\frac{\sqrt{2} - \sqrt{10}}{\sqrt{2} + \sqrt{10}} =$$

b)
$$\frac{3-\sqrt{5}}{3+\sqrt{5}} =$$

d)
$$\frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} =$$