

## SECOND TERM GLOBAL TEST

## 4° ESO



Exercise 1: (1 pto) Work out using the properties of logarithms and indicating all the steps  $\log_3 \frac{\sqrt{3} \cdot \sqrt[3]{9}}{\sqrt[4]{27}} =$ 

Exercise 2: (1.25 ptos) Work out:

a) 
$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 1} =$$
 (0.5)

b) 
$$\lim_{x \to \infty} \left( 3x - \frac{3x^2 - 4x + 7}{x - 1} \right) =$$
 (0.75)

Exercise 3: (0.75 ptos) Find the asymptotes of the function  $f(x) = \frac{5x^2 - 4x + 3}{x^2 - 1}$ 

Exercise 4: (2 ptos) Find the domain of the following functions:

a) 
$$f(x) = \frac{x^2 - 4}{\sqrt{x^2 - 5x + 4}}$$
 (0.75)

b) 
$$f(x) = \frac{\sqrt{x+5}}{x^2-4}$$
 (0.75)

c) 
$$f(x) = \frac{2x-1}{2x-5}$$
 (0.5)

Exercise 5: (1 pto) Find the general equation of the line going through the points A(2,-3) and B(5,1)

Exercise 6: (1 pto) If  $\cos \alpha = 0.72$  find the values of  $\sin \alpha$ ,  $\tan \alpha$  and the angle  $\alpha$  using degrees, minutes and seconds. Round the answers to four decimal figures if needed

Exercise 7: (1.25 ptos) Find the three principal trigonometric functions of the angle  $\alpha$  with four decimal figures, and the value of the missing side. You can't use Pythagoras' theorem.





Exercise 8: (1.75 ptos) Sketch the graph of the piecewise function:

$$f(x) = \begin{cases} 3 & x < -1 \\ 2^x & -1 \le x < 3 \\ x^2 - 12x + 35 & 3 \le x < 8 \end{cases}$$

