

TRIGONOMETRY AND ANALYTIC GEOMETRY TEST 4º ESO

Exercise 1: (1 pto) If $\tan \alpha = 1.75$, $\pi < \alpha < \frac{3\pi}{2}$ find the values of $\cos \alpha$, $\sin \alpha$ and the angle α

$$\cos \alpha = -0.5$$

$$\sin \alpha = -0.87$$

$$\alpha = 240.26^{\circ}$$

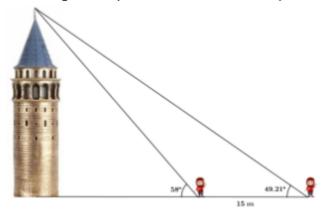
Exercise 2: (1.25 ptos) Find the three principal trigonometric functions of $\alpha = \frac{7\pi}{6}$ rad without using a calculator

$$\cos\frac{7\pi}{6} = -\frac{\sqrt{3}}{2}$$

$$\sin\frac{7\pi}{6} = -\frac{1}{2} \qquad \tan\frac{7\pi}{6} = \frac{\sqrt{3}}{3}$$

$$\tan\frac{7\pi}{6} = \frac{\sqrt{3}}{3}$$

Exercise 3: (1 pto) Convert:


a)
$$\frac{11\pi}{15}$$
 rad into degrees \rightarrow 132° b) 165° into radians \rightarrow $\frac{11\pi}{12}$ rad

b) 165° into radians
$$\rightarrow \frac{11\pi}{12}$$
 rad

c)
$$\frac{17\pi}{12}$$
 rad into degrees \rightarrow 255° d) 315° into radians \rightarrow $\frac{7\pi}{4}$ rad

d) 315° into radians
$$\rightarrow \frac{7\pi}{4}$$
 rad

Exercise 4: (1.5 ptos) İstanbul, here I am. Buradayım. I'm going to use what I learnt in class to work out the height of the Galata Kulesi. I get my goniometer out of the pocket of my backpack and check the angle from my position to the top: 49.21°. Then I walk 15 m closer and check the angle again: 58°. Jeez, I've forgotten my calculator at home. Bana yardım et! What's its height?

h = 63.02 m = 63 m

Exercise 5: (1.25 ptos) Prove that the triangle given by the points A(-1,8), B(5,6) and C(7,12) has a right angle. Where is it?

 $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0 \rightarrow \text{The right angle is at the vertex B}$

Exercise 6: (1.75 ptos) Given the points A(3, k+1), B(4,7k) and C(k+7, k+2) find the value of k so that the triangle that they form is isosceles in A

$$k = 1$$
 $k = -3/7$

Exercise 7: (1 pto) Given the vectors $\vec{u} = (-2, 22)$, $\vec{v} = (4, 8)$ and $\vec{w} = (3, -7)$ write \vec{u} as a linear combination of \vec{v} and \vec{w}

$$\vec{u} = \vec{v} - 2\vec{w}$$

Exercise 8: (1.25 ptos) Find the value of k so that the vectors $\vec{u} = (k-1, -7)$ and $\vec{v} = (k+1, k-1)$ are perpendicular

$$k=1$$
 $k=6$

