THIRD TERM GLOBAL TEST

2° ESO

Exercise 1: (2 ptos) Solve the following second degree equations:

a)
$$5x^2 - 45 = 0 \rightarrow x = \pm 3$$

b)
$$21x^2 - 7x = 0 \rightarrow x = 0, x = 1/3$$

c)
$$x^2 + x - 20 = 0 \rightarrow x = 4$$
, $x = -3$

a)
$$5x^2 - 45 = 0 \rightarrow x = \pm 3$$

b) $21x^2 - 7x = 0 \rightarrow x = 0$, $x = 1/3$
c) $x^2 + x - 20 = 0 \rightarrow x = 4$, $x = -5$
d) $3x^2 - 13x - 10 = 0 \rightarrow x = 5$, $x = -2/3$

Exercise 2: (3 ptos) Solve the following systems of equations using the indicated method:

a) Substitution

$$5x - y = 3$$

$$3x + 2y = 7$$

$$x = 1$$

$$y = 2$$

b) Elimination

$$\begin{cases} x - 3y = 4 \\ 3x - 9y = 7 \end{cases}$$
 It has no solution

c) Graphically

$$x - y = 3
2x + y = 12$$

d) As you prefer

$$2x+3y=1
5x+4y=13$$
 $x=5$
 $y=-3$

Exercise 3: (1.5 ptos) Find the sides of a right-angled triangle knowing that the hypotenuse measures x+2 and the other two sides have lengths of x and x-2 cm

The sides measure 6 cm, 8 cm and 10 cm

Exercise 4: (1 pto) Solve the equation
$$\frac{(x-3)^2}{2} = 2x-6 \rightarrow x=3$$
, $x=7$

Exercise 5: (1.25 ptos) Find the value of the unknowns:

$$x = 16.67$$

 $w = 3.46$

Exercise 6: (1.25 ptos) Find the area of the shadowed region between a regular hexagon with sides of 15 cm and a circle inscribed within

 $A = 54.46 \text{ cm}^2$

