

3° ESO

Exercise 1: (3 ptos) Solve the following second degree equations:

a)
$$5x^2 + 15x = 0 \rightarrow x = 0, x = -3$$

b)
$$5x^2 - 80 = 0 \rightarrow x = \pm 4$$

c)
$$25x^2 - 1 = 0 \rightarrow x = \pm \frac{1}{5}$$

d)
$$x^2 - 3x = 0 \rightarrow x = 0, x = 3$$

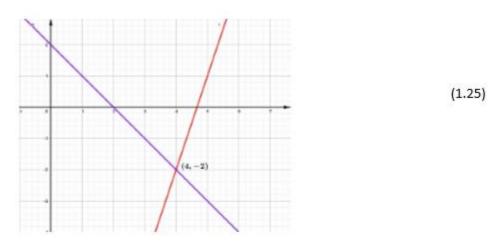
e)
$$x^2 - 14x + 49 = 0 \rightarrow x = 7$$
 double

e)
$$x^2 - 14x + 49 = 0 \rightarrow x = 7$$
 double f) $x^2 - 10x - 11 = 0 \rightarrow x = -1$, $x = 11$

Exercise 2: (2.25 ptos) Solve these equations:

a)
$$\frac{(4x-5)^2}{x-1} = 9 \rightarrow x = 2, \quad x = \frac{17}{16}$$
 (1)

b)
$$(2x+1)(2x-1)-(x-1)^2 = 31 \rightarrow x = 3, \quad x = \frac{-11}{3}$$
 (1.25)


Exercise 3: (3.5 ptos) Solve and classify the following systems using the indicated method.

a)
$$\begin{cases} 5x - y = 2 \\ 10x - 2y = 1 \end{cases}$$
 Substitution $\rightarrow \mathbb{Z}$ solution, inconsistent (0.75)

b)
$$\begin{cases} 3x + y = 13 \\ 5x - 3y = 31 \end{cases}$$
 Elimination $\rightarrow x = 5$ $y = -2$ Consistent independent (0.75)

c)
$$\begin{cases} 3x - 2y = 4 \\ 5x + 3y = 2 \end{cases}$$
 $\rightarrow x = \frac{16}{19}$ $y = \frac{-14}{19}$ Consistent independent (0.75)

d)
$$\begin{cases} 3x - y = 14 \\ x + y = 2 \end{cases}$$
 Graphically Consistent independent

Exercise 4: (1.25 ptos) A couple of months ago I realized that my pink Christmas cactuses had 15 flowers but the white ones only had 10 flowers. One day I was bored, and coughing a lot, and I decided to count them. A total of 17 plants and 240 flowers. How many cactuses of each type do I have?

I have 14 cactuses with pink flowers and 3 cactuses with white flowers

