

FIRST TERM GLOBAL TEST- 3° ESO

Exercise 1: (1.75 ptos) Given the following table representing a random variable:

x_i	[0,2]	(2,4]	(4,6]	(6,8]
f_i	12	15	9	7

- a) Find the range and the median
- b) Find Pearson's coefficient of variation

Exercise 2: (1.5 points) Given the following table showing the values and frequencies of a certain random variable

x_i	1	2	3	4	5
f_{i}	9	6	8	9	4

- a) Find the percentage corresponding to each value of the variable
- b) Find the measures of central tendency

Exercise 3: (2.5 ptos) Work out:

a)
$$\sqrt[5]{a^3} \cdot \sqrt[3]{a^{-2}} : \sqrt{a^{-1}} =$$

b)
$$\frac{\sqrt{a^{-1}} \cdot \sqrt[7]{a^{-5}b^2}}{\sqrt[10]{a^4b^{-7}}} =$$

c)
$$3\sqrt{75} - 2\sqrt{48} + \sqrt{300} =$$

Exercise 4: (1.5 ptos) Find these unions and intersections of intervals and write them as inequalities too

a)
$$[-5,1] \cup [0,+\infty) =$$

b)
$$(-3,2] \cap [0,5] =$$

c)
$$(-\infty,3) \cap [2,+\infty) =$$

Exercise 5: (1.75 ptos) Work out and express the answers using scientific notation:

a)
$$4.25 \cdot 10^{-4} - 3.1 \cdot 10^{-3} + 8.32 \cdot 10^{-1} =$$

b)
$$(7.12 \cdot 10^{-5}) \cdot (3.41 \cdot 10^{-8}) =$$

c)
$$(1.85 \cdot 10^{-1})$$
: $(7.92 \cdot 10^{-5})$ =

Exercise 6: (1 pto) Eighteen elves can hang one thousand and twenty Christmas balls in fifteen trees in one day. How many elves do we need to hang three thousand balls in twenty-one trees?

