

FIRST TERM GLOBAL TEST- 3° ESO

Exercise 1: (1.75 ptos) Given the following table representing a random variable:

x_i	[0,2]	(2,4]	(4,6]	(6,8]
f_{i}	12	15	9	7

a) Find the range and the median R = 8 Me = (2, 4]

$$R = 8$$
 $Me = (2, 4]$

b) Find Pearson's coefficient of variation CV = 0.59

$$CV = 0.59$$

Exercise 2: (1.5 points) Given the following table showing the values and frequencies of a certain random variable

x_i	1	2	3	4	5
f_{i}	9	6	8	9	4

a) Find the percentage corresponding to each value of the variable

x_i	1	2	3	4	5
f_i	9	6	8	9	4
%	25	17	22	25	11

b) Find the measures of central tendency $M_0 = 1,4$ $M_2 = 3$ $\bar{x} = 2.81$

$$M_0 = 1,4$$
 $M_2 = 3$ $\bar{x} = 2.81$

Exercise 3: (2.5 ptos) Work out:

a)
$$\sqrt[5]{a^3} \cdot \sqrt[3]{a^{-2}} : \sqrt{a^{-1}} = \sqrt[30]{a^{13}}$$

b)
$$\frac{\sqrt{a^{-1}} \cdot \sqrt[7]{a^{-5}b^2}}{\sqrt[10]{a^4b^{-7}}} = \frac{1}{a} \cdot \sqrt[70]{\frac{b^{69}}{a^{43}}}$$

c)
$$3\sqrt{75} - 2\sqrt{48} + \sqrt{300} = 17\sqrt{3}$$

Exercise 4: (1.5 ptos) Find these unions and intersections of intervals and write them as inequalities too

a)
$$[-5,1] \cup [0,+\infty) = [-5,+\infty) \rightarrow x \ge -5$$

b)
$$(-3,2] \cap [0,5] = [0,2] \rightarrow 0 \le x \le 2$$

c)
$$(-\infty,3) \cap [2,+\infty) = [2,3) \rightarrow 2 \le x < 3$$

Exercise 5: (1.75 ptos) Work out and express the answers using scientific notation:

a)
$$4.25 \cdot 10^{-4} - 3.1 \cdot 10^{-3} + 8.32 \cdot 10^{-1} = 8.29 \cdot 10^{-1}$$

b)
$$(7.12 \cdot 10^{-5}) \cdot (3.41 \cdot 10^{-8}) = 2.43 \cdot 10^{-12}$$

c)
$$(1.85 \cdot 10^{-1})$$
: $(7.92 \cdot 10^{-5}) = 2.34 \cdot 10^{3}$

Exercise 6: (1 pto) Eighteen elves can hang one thousand and twenty Christmas balls in fifteen trees in one day. How many elves do we need to hang three thousand balls in twenty-one trees? 75 elves

