

FIRST TERM GLOBAL TEST

3° ESO

Exercise 1: (2.75 ptos) Work out, express as a single radical and simplify if possible:

a)
$$\sqrt[3]{x^5} : \sqrt[7]{x^{-3}} \cdot \sqrt{x^{-7}} = \frac{1}{x} \cdot \sqrt[42]{\frac{1}{x^{17}}}$$
 (0.75)

b)
$$\frac{\sqrt[5]{a^2b^{-3}}\sqrt{a^{-1}}}{\sqrt[3]{a^{-4}b}} = a \cdot \sqrt[30]{\frac{a^7}{b^{28}}}$$
 (1)

c)
$$\sqrt{80} - 3\sqrt{108} - 7\sqrt{192} = 4\sqrt{5} - 74\sqrt{3}$$
 (1)

Exercise 2: (1 pto) Divide 5800€ in an inversely proportional way to 3, 5 and 9

$$x = 3000 \in y = 1800 \in z = 1000 \in$$

Exercise 3: (1.5 ptos) Find these unions and intersections of intervals and write them as inequalities

a)
$$(-4,0] \cup [-2,+\infty) = (-4,+\infty) \rightarrow -4 < x, x > -4$$

b)
$$(-7,2) \cap [0,9] = [0,2) \rightarrow 0 \le x < 2$$

c)
$$(-3,0] \cap [0,2) = \{0\} \rightarrow x = 0$$

Exercise 4: (2.75 ptos) Given the following table representing a random variable:

\mathbf{x}_{i}	[0,4]	(4,8]	(8,12]	(12,16]
f_i	12	19	20	9

- a) Classify the variable Quantitative continuous
- b) Find the measures of central tendency $M_0 = (8,12]$ $\overline{x} = 7.73$ $M_2 = (4,8]$

- c) Find Pearson's coefficient of variation CV = 0.5
- d) Plot the frequency polygon

Exercise 5: (1 pto) I've bought shares from a company with a value of 3000€. The first year their price increased by 5%, and the second year they increased again by 7.25%, but these past two years they've lost a 8.5% each year. How much money do I have now?

2828.46€

Exercise 6: (1 pto) Thirty gnomes working non-stop need four hours and a half to prepare chocolate milk for the 1200 children who are visiting Santa today. How many hours will twenty-five gnomes have to work tomorrow if 1750 children are expected to go for a visit? Round the answer to hours, minutes and seconds. 7h 52'30"

