

GLOBAL TEST - 3° ESO

Exercise 1: (1 pto) This table represents the values of a certain random variable. Find Pearson's CV = 0.7coefficient of variation

x_i	0	1	2	3
f_{i}	5	9	7	4

Exercise 2: (1.25 ptos) Work out:

a)
$$\sqrt[7]{a^2} \cdot \sqrt{a^{-1}} : \sqrt[3]{a^{-5}} = a \cdot \sqrt[42]{a^{19}}$$
 (0.5)

b)
$$x^2 + (2x - 5)^2 = 10 \rightarrow x = 1 \qquad x = 3$$
 (0.75)

Exercise 3: (0.75 ptos) Find the value of k so that when dividing $P(x) = x^3 - kx^2 + 7x - 5$ by (x-2)k = 4the remainder is 1

Exercise 4: (1.75 ptos) Factorize the following polynomials and indicate their roots:

a)
$$P(x) = x^4 - 13x^2 + 36 \rightarrow \begin{cases} \text{Roots: } x = \pm 2, & x = \pm 3 \\ \text{Factorization: } (x+3)(x+2)(x-2)(x-3) \end{cases}$$
 (0.75)

a)
$$P(x) = x^4 - 13x^2 + 36 \rightarrow \begin{cases} \text{Roots: } x = \pm 2, & x = \pm 3 \\ \text{Factorization: } (x+3)(x+2)(x-2)(x-3) \end{cases}$$

b) $P(x) = x^4 + 5x^3 + 8x^2 + 4x \rightarrow \begin{cases} \text{Roots: } x = 0, & x = -1, & x = -2 \text{ double} \\ \text{Factorization: } x(x+1)(x+2)^2 \end{cases}$

(0.75)

Exercise 5: (1 pto) Find the axial diagonal and the area of a cuboid with sides of lengths 10 cm, 12 cm $A = 900 \text{ cm}^2$ D = 21.66 cmand 15 cm

Exercise 6: (2 ptos)

a) Find the general equation of the line that goes through the points
$$P(-1,4)$$
 and $Q(1,6)$ (0.75) $x-y+5=0$

b) Plot the following piecewise function, studying all the characteristics of the parabola:

$$f(x) = \begin{cases} 5 & x \le 1 \\ x^2 - 6x + 8 & x > 1 \end{cases}$$
 (1.25)

|x = 40|Exercise 7: (0.75 ptos) Find the value of x:

Exercise 8: (1.5 ptos) Given the following graph of a certain function:

- a) Indicate its domain and its image $\operatorname{Dom} f = (-5, +\infty)$ $\operatorname{Im} f = [-6, +\infty)$
- Increases: $(-3,1) \cup (5,+\infty)$ b) Study its monotony
- Decreases: $(-5,-3) \cup (1,5)$

c) Study the extrema

Relative maxima: x = 1 Absolute maximum: $\not\equiv$ Absolute minimum: x = -3, x = 5

