THIRD TERM GLOBAL TEST

3º ESO

Exercise 1: (1 point) Find the value of k so that when dividing $P(x) = kx^3 - 5x^2 + 3x - 7$ by (x-2) the remainder is $19 \rightarrow k = 5$

Exercise 2: (2.25 points) Factorize the following polynomials and indicate their roots:

a)
$$Q(x) = x^4 + 7x^3 + 16x^2 + 12x \rightarrow \begin{cases} \text{Roots: } x = 0, \ x = -2 \text{ double, } x = -3 \\ \text{Factorization: } x(x+2)^2(x+3) \end{cases}$$

$$(1)$$

b)
$$P(x) = x^5 - x^4 - 17x^3 + 17x^2 + 16x - 16$$

$$\begin{cases} \text{Roots: } x = -1, \ x = 1 \text{ double, } x = \pm 4 \\ \text{Fact.: } (x+1)(x-1)^2(x+4)(x-4) \end{cases}$$
 (1.25)

Exercise 3: (1.5 points) Find the domain of the following functions:

a)
$$f(x) = \frac{2x+5}{x^3-6x^2-7x} \rightarrow \text{Dom } f = \mathbb{R} - \{-1, 0, 7\}$$
 (1)

b)
$$f(x) = \frac{x^2 - 4}{\sqrt{x - 9}} \rightarrow \text{Dom } f = (9, +\infty)$$
 (0.5)

Exercise 4: (1.5 points) Given the graph of a certain function:

- a) Find its domain and its image $\operatorname{Dom} f = (-\infty, 3) \cup (3, 9]$ $\operatorname{Im} f = [-3.2, +\infty)$
- b) Study its monotony

Increases: (-1,0) and (2,3) Decreases: $(-\infty,-1)$ and (0,2) and (3,9)

c) Study the extrema

Relative maxima: x = 0

Absolute maximum: ∄

Relative minima: x = -1, x = 2, x = 9

Absolute minimum: x = 2

Exercise 5: (2 points) Plot graph of the function $f(x) = \begin{cases} x^2 + 6x + 8 & x < -1 \\ 2x + 5 & -1 < x < 4 \end{cases}$

Exercise 6: (1.75 points)

a) Find the general equation of the line that goes through the points
$$P(7,-2)$$
 and $Q(4,5)$ (1.25)

b) Find a parallel line to
$$2x-7y-9=0$$
 going through the point $P(-2,4)$
$$2x-7y+32=0 \tag{0.5}$$

