

SECOND TERM GLOBAL TEST

Exercise 1: (1 pto) In a geometric progression we know that r=2 and $a_{15}=212992$. Find the general term, and the sum of the first thirty-seven terms. $a_n = 13 \cdot 2^{n-1} \rightarrow S_{37} = 1.79 \cdot 10^{12}$

Exercise 2: (1 pto) In an arithmetic progression we know that $a_6 = 3$ and $a_{21} = -57$. Find the general $a_n = 23 - 4(n-1) \rightarrow S_{200} = -75000$ term and the sum of the first two hundred terms.

Exercise 3: (0.75 ptos) Find the position of the term 300 in the sequence {12,18,24,30,36···} n = 49

Exercise 4: (2 ptos) Solve the following second degree equations:

a)
$$21x^2 + 3x = 0 \rightarrow x = 0$$
, $x = -\frac{1}{7}$ b) $100x^2 - 9 = 0 \rightarrow x = \pm \frac{3}{10}$

b)
$$100x^2 - 9 = 0 \rightarrow x = \pm \frac{3}{10}$$

c)
$$x^2 - 28x + 196 = 0 \rightarrow x = 14$$
 double

c)
$$x^2 - 28x + 196 = 0 \rightarrow x = 14$$
 double d) $20x^2 - 3x - 2 = 0 \rightarrow x = -\frac{1}{4}$, $x = \frac{2}{5}$

Exercise 5: (2 ptos) Solve the following equations:

a)
$$\frac{3x-1}{x+3} = \frac{7}{3x+1} \rightarrow x = 2$$
, $x = -\frac{11}{9}$

b)
$$(2x-3)^2 = (x+2)^2 \rightarrow x = 5$$
, $x = \frac{1}{3}$

Exercise 6: (2.5 ptos) Solve the following systems of equations using the indicated method:

a)
$$3x - y = 22$$

 $5x + 2y = 11$ Substitution $x = 5$
 $y = -7$ (0.75)

b)
$$\begin{cases} 5x - 3y = 46 \\ 7x + 2y = 21 \end{cases}$$
 Elimination $\begin{cases} x = 5 \\ y = -7 \end{cases}$ (0.75)

c)
$$\begin{cases} 3x + y = 1 \\ 2x - y = -11 \end{cases}$$
 Graphical (1)

Exercise 7: (0.75 ptos) If $P(x) = 7x^2 - 6x + 5$ and Q(x) = 3x - 1 work out the value of $P \cdot Q$ $P \cdot Q = 21x^3 - 25x^2 + 21x - 5$

