SEQUENCES AND POLYNOMIALS TEST - 3° ESO

Exercise 1: (1 point) Find the general term in the following series:

a)
$$\left\{ \frac{4}{3}, \frac{9}{4}, \frac{16}{5}, \frac{25}{6}, \frac{36}{7}, \cdots \right\}$$

- b) {162, 54, 18, 6, 2 ···}
- c) $\{17, 12, 7, 2, -3 \cdots \}$

Exercise 2: (1 point) In an arithmetic progression we know that $a_{29} = 303$ and the sum of the first twenty-nine terms equals 4321. Find the general term.

Exercise 3: (1 point) In a GP we know that $a_7 = 364.5$ and $a_{17} = 21523360.5$ Find the general term and the sum of the first twenty-five terms.

Exercise 4: (1 point) In an arithmetic progression we have that $a_1 = 13$ and $a_{32} = -204$. Find the sum of the first fifty terms.

Exercise 5: (1 point) A ball is dropped onto a hard surface from a height of 2m. Every time it bounces, it rebounds to exactly four fifths of the previous height.

- a) Find the general term of the sequence
- b) Work out the values of S_{20} , S_{50} and S_{100}
- c) Describe what happens to the ball, interpreting the previous results.

Exercise 6: (1.5 points) Given the polynomials:

$$P(x) = -2x^4 - 5x^3 - 7x^2 + 8$$

$$Q(x) = 9x^4 - x^3 + 3x - 5$$

$$R(x) = 5x - 2$$

Work out the value of the following operations:

a)
$$P+Q=$$

b)
$$Q - P =$$

c)
$$Q \cdot R =$$

Exercise 7: (1 point) Expand these expressions using notable products:

a)
$$(5x-1)^2 =$$

a)
$$(5x-1)^2 =$$
 b) $(3x-2) \cdot (3x+2) =$

c)
$$(3x^2y^5 - 7x^3y^4)^2 =$$

Exercise 8: (0.75 points) Take out all the possible common factors:

a)
$$12x^4 - 6x^3 + 2x^2 =$$

b)
$$xy^2z^2 + x^2yz^2 + x^2y^2z =$$

c)
$$7v^5w^2 - 21v^4w^5 - 49v^2w^3 =$$

Exercise 9: (1 point) Evaluate the polynomial $P(x) = 2x^3 - x^2 - 5x + 7$ when:

a)
$$x = 2$$

b)
$$x = -3$$

Exercise 10: (0.75 points) Expand $(a+b)^3 =$